skip to main content


Search for: All records

Creators/Authors contains: "Rozenberg, Marcelo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synchronization of electrical oscillators is a crucial step toward practical implementation of oscillator-based and bio-inspired computing. Here, we report the emergence of an unusual stochastic pattern in coupled spiking Mott nanodevices. Although a moderate capacitive coupling results in a deterministic alternating spiking, increasing the coupling strength leads counterintuitively to stochastic disruptions of the alternating spiking sequence. The disruptions of the deterministic spiking sequence are a direct consequence of the small intrinsic stochasticity in electrical triggering of the insulator–metal transition. Although the stochasticity is subtle in individual nanodevices, it becomes dramatically enhanced just in a single pair of coupled oscillators and, thus, dominates the synchronization. This is different from the stochasticity and multimodal coupling, appearing due to collective effects in large oscillator networks. The stochastic spiking pattern in Mott nanodevices results in a discrete inter-spike interval distribution resembling those in biological neurons. Our results advance the understanding of the emergent synchronization properties in spiking oscillators and provide a platform for hardware-level implementation of probabilistic computing and biologically plausible electronic devices.

     
    more » « less
  2. Abstract

    Resistive switching can be achieved in a Mott insulator by applying current/voltage, which triggers an insulator-metal transition (IMT). This phenomenon is key for understanding IMT physics and developing novel memory elements and brain-inspired technology. Despite this, the roles of electric field and Joule heating in the switching process remain controversial. Using nanowires of two archetypal Mott insulators—VO2and V2O3we unequivocally show that a purely non-thermal electrical IMT can occur in both materials. The mechanism behind this effect is identified as field-assisted carrier generation leading to a doping driven IMT. This effect can be controlled by similar means in both VO2and V2O3, suggesting that the proposed mechanism is generally applicable to Mott insulators. The energy consumption associated with the non-thermal IMT is extremely low, rivaling that of state-of-the-art electronics and biological neurons. These findings pave the way towards highly energy-efficient applications of Mott insulators.

     
    more » « less
  3. Many correlated systems feature an insulator-to-metal transition that can be triggered by an electric field. Although it is known that metallization takes place through filament formation, the details of how this process initiates and evolves remain elusive. We use in-operando optical reflectivity to capture the growth dynamics of the metallic phase with space and time resolution. We demonstrate that filament formation is triggered by nucleation at hotspots, with a subsequent expansion over several decades in time. By comparing three case studies (VO2, V3O5, and V2O3), we identify the resistivity change across the transition as the crucial parameter governing this process. Our results provide a spatiotemporal characterization of volatile resistive switching in Mott insulators, which is important for emerging technologies, such as optoelectronics and neuromorphic computing.

     
    more » « less